Acta Cryst. (1964). 17, 762

Structural relationships in beryllium-titanium alloys. By E. Gillam* and H. P. Rooksby, The General Electric Company Limited, Central Research Laboratories, Hirst Research Centre, Wembley, England and L. D. Brownlee, Associated Electrical Industries Limited, Research Laboratories, Trafford Park, Manchester, England

(Received 15 November 1963)

Some years ago Raeuchle & Rundle (1952) described the structure of Be₁₂Ti as disordered hexagonal, with $a_0 = 29.44$ and $c_0 = 7.33$ Å, from an X-ray study of a single crystal. More recently, Zalkin, Sands, Bedford & Krikonian (1961) have reported a tetragonal structure for this phase, the analysis being made from powder patterns.

During investigations of alloys of beryllium carried out by the present authors, also by powder methods, beryllium-rich alloys of beryllium and titanium have consistently shown the presence of a constituent of tetragonal structure similar to that of Zalkin. It was also noticed that the alloy Be₁₂V gave a very similar powder pattern, indicative of an isostructural character. The literature data and those obtained in the work reported here are compiled in Table 1.

Table 1 also includes structure data which have been reported for another Be-Ti phase of composition Be₁₇Ti₂. Although these data differ somewhat in detail, it is clear from a glance at the figures that they are all

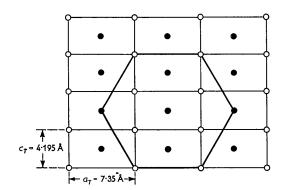


Fig. 1. Hexagonal cell derived from Be₁₂ Ti tetragonal cells with $a_T/c_T = \sqrt{3}$.

- \bigcirc Ti atoms at a=0 level
- Ti atoms at $a = \frac{1}{2}$ level

Be atoms not shown.

based on a similar primitive cell of hexagonal symmetry. Moreover it is possible to deduce a relationship with the tetragonal structure of Be₁₂Ti.

By analogy with the structure of $\mathrm{Be_{12}V}$ (and also that of $\mathrm{Be_{12}Cr}$) we are justified in assuming that tetragonal $\mathrm{Be_{12}Ti}$ has the A6 $\mathrm{Mn_{12}Th}$ structure, space group I_4/mmm . The relationship between this and the hexagonal $\mathrm{Be_{17}Ti_2}$ structure then becomes apparent by reference to Fig. 1. Since for the tetragonal cell, a_T/c_T is very nearly equal to 1/3, a basic geometrically hexagonal cell can be outlined (shown by thick lines), for which $a_H = 7.35$ Å and $a_H = 1.35$ Å and $a_H = 1.35$ Å are in the 1/3 A increasing the following properties of 1/3 A. The 1/3 A increasing the following properties of 1/3 A increasing properties of

Fig. 2 shows a projection on (010) of Mn atoms in the $Mn_{12}Th$ structure and this indicates how they (\equiv Be atoms in $Be_{12}Ti$) are arranged in near-hexagonal symmetry.

The series of alloys which we examined and which are mentioned in Table 1 gave X-ray powder patterns which were remarkably alike. The principal strong reflexions occurred at almost the same Bragg angles. The significant difference between the pattern of alloy IV, containing the hexagonal phase, and the others, lay chiefly in the manner in which some of the strong lines were split.

It appears probable therefore that the transition in structure with change of composition from Be₁₀Ti to

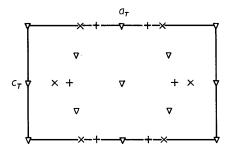


Fig. 2. Projection on (010) of Mn atoms in the Mn₁₂Th structure

- + Mn atoms at a=0 level.
- 4 per unit cell
- \times Mn atoms at a = 0 level.
- 4 per unit cell
- ∇ Mn atoms at a = 0.25, 0.277, or 0.361 levels.
- 16 per unit cell

Table 1. Structure data for beryllium alloys

Alloy compositions used in I, II, III, and IV were respectively 1.5, 5.0, 20.0 and 31.0 wt. % Ti in Be.

Source	Phase	Lattice type and parameters			
Raeuchle & Rundle	$\mathrm{Be_{12}Ti}$	Hexagonal	a = 29.44 Å	$c=~7\!\cdot\!33~{ m \AA}$	
Zalkin et al.	$Be_{12}Ti$	Tetragonal	a = 7.35	c = 4.19	
Present work I	$Be_{12}Ti$	Tetragonal	a = 7.27	c = 4.195	
Present work II	$Be_{12}^{2}Ti$	Tetragonal	a = 7.36	c = 4.195	
Present work III	$Be_{12}Ti$	Tetragonal	a = 7.36	c = 4.195	
Present work	$Be_{12}^{2}V$	Tetragonal	a = 7.35	c = 4.24	
Zalkin et al.	α -Be ₁₇ Ti ₂	Rhombohedral	a = 7.392	c = 10.79	(Hex. axes)
Zalkin et al.	β -Be ₁₇ Ti ₂	Rhombohedral	a = 7.392	c = 7.30	(Hex. axes)
Paine & Carrabine	$Be_{17}Ti_{2}$	Hexagonal	a = 7.34	c = 10.73	,
Vainshtein, Blokhin & Kripyakevich (1962)	$\mathrm{Be}_{17}^{11}\mathrm{Ti}_{2}^{2}$	Trigonal	a = 7.40	c = 10.84	
Present work IV	$\mathrm{Be}_{17}\mathrm{Ti}_2$	Hexagonal	a = 7.35	c = 7.26	

^{*} Now at The Sir John Cass College, London, E.C. 3, England.

 β -Be₁₇Ti₂ is a relatively simple one, in which the [010]_T direction becomes the [0001]_H direction. Some titanium atoms must change from a=0 to $a=\frac{1}{2}$ positions, or *vice versa*, to complete the symmetry, and the removal of 7 Be atoms from the unit cell involves a small decrease in the atomic spacing in this direction, from 7·36 to about 7·30 Å. The removal of 7 atoms without disrupting the near-hexagonal symmetry displayed by the tetragonal arrangement in Fig. 2 appears difficult to accomplish. Removal of the two smaller layers is simple but results in a loss of 8Be atoms. This raises the question of how accurately the composition of Be₁₇Ti₂ is known and whether a composition Be₈Ti is possible.

The other two hexagonal structures of Table 1 can be derived from this transformation. Raeuchle & Rundle's disordered hexagonal structure has the same c parameter as the β -Be₁₇Ti₂ structure and four times the a parameter;

the α -Be₁₇Ti₂ structure has the same a parameter and approximately 1·5 times the c parameter. The above discussion also suggests the possibility that Raeuchle & Rundle's structure determination was carried out on crystals of Be₁₇Ti₂ instead of on crystals of Be₁₂Ti as they believed.

References

Paine, R. M. & Carrabine, J. A. (1960). Acta Cryst. 13, 680.

RAEUCHLE, R. F. & RUNDLE, R. E. (1952). *Acta Cryst.* **5**, 85.

Vainshtein, E. E., Blokhin, S. M. & Kripyakevich, P. I. (1962). Doklady Akad. Nauk SSSR, 142, 85.

ZALKIN, A., SANDS, D. E., BEDFORD, R. G. & KRIKONIAN, O. H. (1961). *Acta Cryst.* 14, 63.

Acta Cryst. (1964). 17, 763

Direct high-temperature single-crystal observation of orientation relationship in zirconia phase transformation. By G. M. Wolten, Aerospace Corporation, El Segundo, California, U.S.A.

(Received 7 October 1963 and in revised form 24 October 1963)

Introduction

Zirconia undergoes a diffusionless phase transformation, in the neighborhood of 1000 °C, from a monoclinic structure, space group $P2_1/c$, to a tetragonal structure, space group $P4_2/nmc$.

From the data of McCullough & Trueblood (1959) for monoclinic zirconia and those of Teufer (1962) for

tetragonal zirconia, one can draw the two projections of the structures shown in Figs. 1 and 2. The projections show four unit cells of the monoclinic structure. A fifth cell, indicated by dashed lines, differs only by the choice of origin in order to render it more directly comparable to the single tetragonal unit cell shown to the right. The tetragonal cell shown is not the conventional cell, but a double one that traditionally has been used for comparison

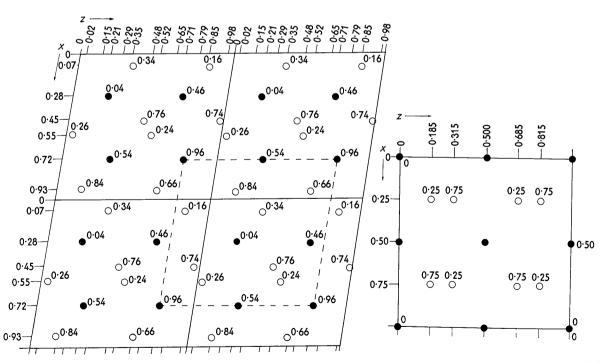


Fig. 1. Projection of ZrO_2 structure parallel to y direction onto x-z plane. Left: monoclinic. Right: Tetragonal. Parts of four monoclinic cells enclosed by broken lines become tetragonal cell after transformation. Solid circles: Zr. Open circles: O.